The ω‐3 fatty acid α‐linolenic acid extends Caenorhabditis elegans lifespan via NHR‐49/PPARα and oxidation to oxylipins

نویسندگان

  • Wenbo Qi
  • Gloria E Gutierrez
  • Xiaoli Gao
  • Hong Dixon
  • Joe A McDonough
  • Ann M Marini
  • Alfred L Fisher
چکیده

The dietary intake of ω-3 polyunsaturated fatty acids has been linked to a reduction in the incidence of aging-associated disease including cardiovascular disease and stroke. Additionally, long-lived Caenorhabditis elegans glp-1 germ line-less mutant animals show a number of changes in lipid metabolism including the increased production of the ω-3 fatty acid, α-linolenic acid (ALA). Here, we show that the treatment of C. elegans with ALA produces a dose-dependent increase in lifespan. The increased longevity of the glp-1 mutant animals is known to be dependent on both the NHR-49/PPARα and SKN-1/Nrf2 transcription factors, although the mechanisms involved are incompletely understood. We find that ALA treatment increased the lifespan of wild-type worms and that these effects required both of these transcription factors. Specifically, NHR-49 was activated by ALA to promote the expression of genes involved in the β-oxidation of lipids, whereas SKN-1 is not directly activated by ALA, but instead, the exposure of ALA to air results in the oxidation of ALA to a group of compounds termed oxylipins. At least one of the oxylipins activates SKN-1 and enhances the increased longevity resulting from ALA treatment. The results show that ω-3 fatty acids inhibit aging and that these effects could reflect the combined effects of the ω-3 fatty acid and the oxylipin metabolites. The benefits of ω-3 fatty acid consumption on human health may similarly involve the production of oxylipins, and differences in oxylipin conversion could account for at least part of the variability found between observational vs. interventional clinical trials.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nuclear hormone receptors as mediators of metabolic adaptability following reproductive perturbations.

Previously, we identified a group of nuclear hormone receptors (NHRs) that promote longevity in the nematode Caenorhabditis elegans following germline-stem cell (GSC) loss. This group included NHR-49, the worm protein that performs functions similar to vertebrate PPARα, a key regulator of lipid metabolism. We showed that NHR-49/PPARα enhances mitochondrial β-oxidation and fatty acid desaturatio...

متن کامل

Germline Signals Deploy NHR-49 to Modulate Fatty-Acid β-Oxidation and Desaturation in Somatic Tissues of C. elegans

In C. elegans, removal of the germline extends lifespan significantly. We demonstrate that the nuclear hormone receptor, NHR-49, enables the response to this physiological change by increasing the expression of genes involved in mitochondrial β-oxidation and fatty-acid desaturation. The coordinated augmentation of these processes is critical for germline-less animals to maintain their lipid sto...

متن کامل

Coordinate Regulation of Lipid Metabolism by Novel Nuclear Receptor Partnerships

Mammalian nuclear receptors broadly influence metabolic fitness and serve as popular targets for developing drugs to treat cardiovascular disease, obesity, and diabetes. However, the molecular mechanisms and regulatory pathways that govern lipid metabolism remain poorly understood. We previously found that the Caenorhabditis elegans nuclear hormone receptor NHR-49 regulates multiple genes in th...

متن کامل

Determination of the effects of food preservatives benzoic acid and sodium nitrate on lifespan, fertility and physical growth in Caenorhabditis elegans

Presently, the use of protective food additives such as benzoic acid and sodium nitrate is quite common. However, it was found that these additives, which initially appeared to be harmless, led to the emergence of a number of health problems. Cancer and diseases and deaths with no apparent causes are among the leading concerns. Therefore, the studies which can reveal the genotoxic potential of ...

متن کامل

Loss of NDG-4 extends lifespan and stress resistance in Caenorhabditis elegans

NDG-4 is a predicted transmembrane acyltransferase protein that acts in the distribution of lipophilic factors. Consequently, ndg-4 mutants lay eggs with a pale appearance due to lack of yolk, and they are resistant to sterility caused by dietary supplementation with the long-chain omega-6 polyunsaturated fatty acid dihommogamma-linolenic acid (DGLA). Two other proteins, NRF-5 and NRF-6, a homo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 16  شماره 

صفحات  -

تاریخ انتشار 2017